Elastic Continuum Model

The elastic continuum model [1] joins the continuum Newton’s law with the material stress-strain relation:

\[\begin{equation} \rho \frac{\partial^2 u_i}{\partial t^2}=\frac{\partial T_{ij}}{\partial r_j}, \quad T_{ij}=c_{ijkl}\epsilon_{kl} \end{equation}\]

where \(u_i\) is the local displacement, \(\rho\) is the density, \(T_{ij}\) is the stress tensor, \(c_{ijkl}\) is the stiffness tensor, and \(\epsilon_{ijkl}\) is the strain tensor \(\epsilon_{ij}=\frac{1}{2}\left( \partial_{r_j} u_i + \partial_{r_i} u_j\right)\). In Voigt notation

\[\begin{equation} T_{\alpha}=c_{\alpha \beta}\epsilon_\beta \end{equation}\]

where \(\alpha, \beta\) run 1-6 and the Voigt tuples are related to the actual tensors by

\[\begin{split}\begin{align} T_{1}=T_{xx}&,\quad \epsilon_{1}=\epsilon_{xx}\\ T_{2}=T_{yy}&,\quad \epsilon_{2}=\epsilon_{yy}\\ T_{3}=T_{zz}&,\quad \epsilon_{3}=\epsilon_{zz}\\ T_{4}=T_{yz}&,\quad \epsilon_{4}=2\epsilon_{yz}\\ T_{5}=T_{xz}&,\quad \epsilon_{5}=2\epsilon_{xz}\\ T_{6}=T_{xy}&,\quad \epsilon_{6}=2\epsilon_{xy} \end{align}\end{split}\]

Wurtzite

For a wurtzite crystal, the \(c_{\alpha \beta}\) can be written

\[\begin{split}\begin{equation} c=\begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}\left(C_{11}-C_{12} \right) \end{pmatrix} \end{equation}\end{split}\]

with in-plane wavevector \(q\), the strains are given by

\[\begin{split}\begin{align} \epsilon_1&=iq u_x ,& \quad \epsilon_4&=\partial_z u_y \\ \epsilon_2&=0 ,& \quad \epsilon_5&=iqu_z+\partial_z u_x \\ \epsilon_3&=\partial_zu_z ,& \quad \epsilon_6&=iqu_y \end{align}\end{split}\]

Then the combined relation becomes

\[\begin{split}\begin{equation} -\rho\omega^2\begin{pmatrix} u_x\\ u_y\\ u_z \end{pmatrix}= \begin{pmatrix} -C_{11}q^2u_x + iqC_{13}\partial_zu_z + \partial_zC_{44}iq u_z+\partial_zC_{44}\partial_zu_x \\ -\frac{1}{2}\left( C_{11}-C_{12} \right)q^2u_y +\partial_z C_{44}\partial_z u_y\\ -C_{44}q^2u_z+C_{44}iq\partial_z u_x+iq\partial_zC_{13}u_x+\partial_zC_{33}\partial_zu_z \end{pmatrix} \end{equation}\end{split}\]

Or

\[\begin{equation} \rho\omega^2u= Cu, \quad C= q^2C^0 -iq C^L\partial_z -iq \partial_z C^R - \partial_z C^2 \partial_z \label{eq:split} \end{equation}\]

where

\[\begin{split}\begin{equation} C^0= \begin{pmatrix} C_{11} & & \\ & \frac{1}{2}\left( C_{11}-C_{12} \right) & \\ & & C_{44} \end{pmatrix}, \quad C^2= \begin{pmatrix} C_{44} & & \\ & C_{44} & \\ & & C_{33} \end{pmatrix} \end{equation}\end{split}\]
\[\begin{split}\begin{equation} C^L= \begin{pmatrix} & & C_{13}\\ & 0& \\ C_{44} & & \end{pmatrix}, \quad C^R= \begin{pmatrix} & & C_{44}\\ & 0& \\ C_{13} & & \end{pmatrix} \end{equation}\end{split}\]

Wurtzite piezoelectric potential

Once the acoustic phonon modes are solved for, each mode can be considered a source of piezoelectric charge

\[\begin{split}\begin{align} \rho=-\nabla \cdot \vec P&= -\nabla \cdot \left[ \begin{pmatrix} 0 & 0 & 0 & 0 & e_{15} & 0\\ 0 & 0 & 0 & e_{15} & 0 & 0\\ e_{31} & e_{31} & e_{33} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \epsilon_{xx}\\ \epsilon_{yy}\\ \epsilon_{zz}\\ 2\epsilon_{yz}\\ 2\epsilon_{xz}\\ 2\epsilon_{xy} \end{pmatrix} \right] \end{align}\end{split}\]

where \(e_{\alpha\beta}\) are the piezoelastic moduli

\[\begin{equation} q^2\varepsilon_\perp\phi -\partial_z\varepsilon_\parallel \partial_z \phi =q^2e_{15}u_z-iqe_{15}\partial_zu_L -iq \partial_z e_{31}u_L- \partial_ze_{33}\partial_zu_z \end{equation}\]

which can be written

\[\begin{equation} C^0\phi -\partial_z C^2\partial_z\phi = C^{0'}u_z-iC^{L'}u_x-iC^{R'}u_x-\partial_zC^{2'}\partial_zu_z \end{equation}\]

where

\[\begin{equation} C_0=q^2\varepsilon_\perp, \quad C_2=\varepsilon_\parallel \end{equation}\]
\[\begin{equation} C^{0'}=q^2e_{15}, C^{L'}=qe_{15}, C^{R'}=qe_{31}, C^{2'}=e_{33} \end{equation}\]