Elastic Continuum Model
The elastic continuum model  joins the continuum Newton’s law with the material stress-strain relation:
\[\begin{equation}
  \rho \frac{\partial^2 u_i}{\partial t^2}=\frac{\partial T_{ij}}{\partial r_j}, \quad T_{ij}=c_{ijkl}\epsilon_{kl}
\end{equation}\]
where \(u_i\) is the local displacement, \(\rho\) is the density,
\(T_{ij}\) is the stress tensor,
\(c_{ijkl}\) is the stiffness tensor,
and \(\epsilon_{ijkl}\) is the strain tensor
\(\epsilon_{ij}=\frac{1}{2}\left( \partial_{r_j} u_i + \partial_{r_i} u_j\right)\).
In Voigt notation
\[\begin{equation}
  T_{\alpha}=c_{\alpha \beta}\epsilon_\beta
\end{equation}\]
where \(\alpha, \beta\) run 1-6 and the Voigt tuples are related to the actual tensors by
\[\begin{split}\begin{align}
  T_{1}=T_{xx}&,\quad
  \epsilon_{1}=\epsilon_{xx}\\
  T_{2}=T_{yy}&,\quad
  \epsilon_{2}=\epsilon_{yy}\\
  T_{3}=T_{zz}&,\quad
  \epsilon_{3}=\epsilon_{zz}\\
  T_{4}=T_{yz}&,\quad
  \epsilon_{4}=2\epsilon_{yz}\\
  T_{5}=T_{xz}&,\quad
  \epsilon_{5}=2\epsilon_{xz}\\
  T_{6}=T_{xy}&,\quad
  \epsilon_{6}=2\epsilon_{xy}
\end{align}\end{split}\]
Wurtzite
For a wurtzite crystal, the \(c_{\alpha \beta}\) can be written
\[\begin{split}\begin{equation}
  c=\begin{pmatrix}
    C_{11} & C_{12} & C_{13} &      0 &      0 & 0 \\
    C_{12} & C_{22} & C_{13} &      0 &      0 & 0 \\
    C_{13} & C_{13} & C_{33} &      0 &      0 & 0 \\
    0      &      0 &      0 & C_{44} &      0 & 0 \\
    0      &      0 &      0 &      0 & C_{44} & 0 \\
    0      &      0 &      0 &      0 &      0 & \frac{1}{2}\left(C_{11}-C_{12}  \right)  \end{pmatrix}
\end{equation}\end{split}\]
with in-plane wavevector \(q\), the strains are given by
\[\begin{split}\begin{align}
  \epsilon_1&=iq u_x ,& \quad \epsilon_4&=\partial_z u_y \\
  \epsilon_2&=0 ,& \quad \epsilon_5&=iqu_z+\partial_z u_x \\
  \epsilon_3&=\partial_zu_z ,& \quad \epsilon_6&=iqu_y
\end{align}\end{split}\]
Then the combined relation becomes
\[\begin{split}\begin{equation}
  -\rho\omega^2\begin{pmatrix}
    u_x\\
    u_y\\
    u_z
  \end{pmatrix}=
  \begin{pmatrix}
    -C_{11}q^2u_x + iqC_{13}\partial_zu_z + \partial_zC_{44}iq u_z+\partial_zC_{44}\partial_zu_x  \\
    -\frac{1}{2}\left( C_{11}-C_{12} \right)q^2u_y +\partial_z C_{44}\partial_z u_y\\
  -C_{44}q^2u_z+C_{44}iq\partial_z u_x+iq\partial_zC_{13}u_x+\partial_zC_{33}\partial_zu_z
  \end{pmatrix}
\end{equation}\end{split}\]
Or
\[\begin{equation}
  \rho\omega^2u=
  Cu, \quad C= q^2C^0 -iq C^L\partial_z -iq \partial_z C^R  - \partial_z C^2 \partial_z
  \label{eq:split}
\end{equation}\]
where
\[\begin{split}\begin{equation}
  C^0= \begin{pmatrix}
    C_{11} &  & \\
    & \frac{1}{2}\left( C_{11}-C_{12} \right) & \\
    & & C_{44}
  \end{pmatrix}, \quad
  C^2= \begin{pmatrix}
    C_{44} &  & \\
    & C_{44} & \\
    & & C_{33}
  \end{pmatrix}
\end{equation}\end{split}\]
\[\begin{split}\begin{equation}
  C^L= \begin{pmatrix}
    &  & C_{13}\\
    & 0& \\
    C_{44} & &
  \end{pmatrix}, \quad
  C^R= \begin{pmatrix}
    &  & C_{44}\\
    & 0& \\
    C_{13} & &
  \end{pmatrix}
\end{equation}\end{split}\]
Wurtzite piezoelectric potential
Once the acoustic phonon modes are solved for, each mode can be considered a source of piezoelectric charge
\[\begin{split}\begin{align}
\rho=-\nabla \cdot \vec P&= -\nabla \cdot \left[
\begin{pmatrix}
  0 & 0 & 0 & 0 & e_{15} & 0\\
  0 & 0 & 0 &  e_{15} & 0 & 0\\
  e_{31} & e_{31} & e_{33} & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
  \epsilon_{xx}\\
  \epsilon_{yy}\\
  \epsilon_{zz}\\
  2\epsilon_{yz}\\
  2\epsilon_{xz}\\
  2\epsilon_{xy}
\end{pmatrix} \right]
\end{align}\end{split}\]
where \(e_{\alpha\beta}\) are the piezoelastic moduli
\[\begin{equation}
  q^2\varepsilon_\perp\phi -\partial_z\varepsilon_\parallel \partial_z \phi
    =q^2e_{15}u_z-iqe_{15}\partial_zu_L
    -iq \partial_z e_{31}u_L- \partial_ze_{33}\partial_zu_z
\end{equation}\]
which can be written
\[\begin{equation}
  C^0\phi -\partial_z C^2\partial_z\phi = C^{0'}u_z-iC^{L'}u_x-iC^{R'}u_x-\partial_zC^{2'}\partial_zu_z
\end{equation}\]
where
\[\begin{equation}
  C_0=q^2\varepsilon_\perp, \quad C_2=\varepsilon_\parallel
\end{equation}\]
\[\begin{equation}
  C^{0'}=q^2e_{15},
  C^{L'}=qe_{15},
  C^{R'}=qe_{31},
  C^{2'}=e_{33}
\end{equation}\]